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SUMMARY

The flow of fluids with and without heat sources and sub~ect to
body forces between two plane psrallel surfaces which are oriented in
the direction of the generating body force is analyzed under the condi-
tion that the temperature vary linear~ along.these surfaces. lt is
found that a modified Rayleigh number (product of the reciprocal of the
ratio of specific heats and the Prandt1 number R and the modified

b pfxd
Grashof number GrA) as well as a parameter KA = pr GrA — is of

CP
v significance in this problemj where I?!is the volumetric expansion

coefficient, fx is the negative of the X-component of body force per
Unit MaSSj d is the characteristic length, and ~ is the specific

heat at constant pressure. Solutions of this problem are obtained in
terms of “universal” functions which are tabulated for simple applica-
tion to specific cases. Representative velocity and temperature dis-
tributions from which detailed study of the heat transfer is made are
then computed. When the ratio of CKA (where C is related to the mass

flow) to the Rayleigh numiberis of unit order of tignitude, the effects
of aerodynamic or frictions2 heating can be ‘appreciable. Asymptotic
solutions (for large values of the Rayleigh number) which render the
computations simple are also presented.

Comparison of the results from the method given herein with those
obtained elsewhere in an approximate manner for a special case simu-
lating the natural-convection flow of fluids with heat sources in a com-
pletely enclosed region shows that the approximate method is suffi-
ciently accurate for problems in which the modified Rayleigh number is

less than 104.
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INTRODUCTION
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In recent years the transfer of heat to and from enclosed or par-
tially enclosed regions by means of natural convection or by a combina-
tion of natural and forced convection has taken on new significance in
the fields of aeronautics, atomic power, electronics, and chemical en-
gineering. Most of the information on these modes of heat transfer under
such conditions is of a semiempiricalor specialized nature; relatively
little detailed information exists for internal natural-convection flows.
In reference 1 there appears one of the few attempts to determine theo-
retically the velocity and temperature distributions in detail and hence
the heat transfer for an titernal flow problem of this kind. In that
reference a solution was found for the fully developed flow of fluids
with and without heat sources between two long parallel plates with con-
stant wall temperatures (where one could be different from the other)
oriented in the direction of the generating body force. The information
obtained therein is of practical value in connectionwith fully developed
flows subject to body forces where the surfaces are maintained at uniform
temperatures. Lighthill (ref. 2) employs integral methods to study the
natural-convection flow in tubes with either one end or both ends closed
and with constant wall temperatures, and in reference 3 approximate
superimposed free- and forced-convectionflows are obtained for short
channels and pipes.

As the next step in the study of natural convection or cmnbined
natural and forced flows in confined spaces, consideration is here given
to the configuration of reference 1 with the exception that the thermal
boundary condition specified is that the surface temperatures vary
linearly along the plates or surfaces. (One surface, however, may be at
a different local temperature from the other but the slopes of the tem-
perature distributions on each surface are taken tobe eqml.) The
analogous forced-convectionproblem is treated in references 4, 5, and 6.
The present problem simulates several important yhysical occurrences of
this phenomenon for example, it could represent the case where the out-
side of the channel formed by the plates is cooled (or heated) by a
counterflow. In addition, the present problem represents a more general
case than was considered in reference 1, since here the temperature will
no longe~ be restricted to be a function of the transverse coordinate alone
and, hence, energy convective as well as mass convective effects will be
included.

The solution is obtained in terms of functions which depend on only
one of the several associated Mmensionless parameters, and these func-
tions are tabulated so that specific cases canbe easily computed. Solu-
tions for pure natural convection and for superimposed natural and forced
convection are shown to be essentially identical. Representative velocity
and temperature distributions are also presented, and the effects of
frictional or aero~amic heating on the flow and heat transfer are
discussed.

4
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R
A special case which simulates a completely enclosed region in which

there is no net mass flow, the walls are at the ssme temperature, and
. heat is generated uniformly by heat sources is treated, and detailed

velocity and temperature profiles are obtained from which the heat trans-
fer is determined. This special case was treated in an approximate
manner in reference 7.

Consideration is also given to the problem of convective inversion,
that is, to the cases where the modified Grashof nuniberchanges sign.
IX is shown that convective inversion tie to cknges in the body force
direction, to changes in the sign of the volumetric expansion coeffi-
cient, or to changes in the A.gn of the axial temperature gradient alters
the ckaracter of the problem, because, it
ditions the flow hecomes unstable because
pp. 104 to 3.07,ref. 8).

ANKLYSIS

For?mlation of the

L The studY to be made here is that of

is believed, under these con-
of heating from below (see

Froblem

the laminar fullY developed
flow of flui& with andwlthout heat sources and subject to a body-force
between two plane parallel surfaces open at both ends and oriented in

s the direction of the generating body force (see fig. 1). It is further
specified that there shall be linear (with equal slopes) temperature
variations along the walls but that the walls need not necessarily be at
the same temperature. The flow is assumed to be parallel to the axis of
the channel (that is, the only nonvanishing velocity component is the one
in the longitudinal direction) and in addition it is assumed that the
physical properties (for example, Cp and W) of the fluids are constants

and that the essential influence of the density changes on the flow is
taken into account by the introduction of the volumetric expansion co-
efficient in the body force term (that is} the other influences of vari-
able density snd the variation of the expansion coefficient with tempera-
ture are negligible). Discussions of the justification of the assump-
tions can be found in references 1, 9, and 10.

Under the conditions stated, the basic equations with body forces
included expressing the conservation of mass, momentum, and energy (see
ref. 1) become, respectively,

(1)

.

\
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%=0 (3)

(4)

(See appendix A for a complete list of the symbols used herein.) With
cognizance taken of equations (1) and (3) the above system redu;es to

)al?
z? (5)

(6)

where the velocity is a function of the transverse coordinate Y only
and the pressure is a function of only the longitudinal coordinate.

The body force term in equation (5) can be written as a buoyancy
termby introducing the volumetric expansion coefficient ~ in a manner
similar to that described in appendix B of reference 1. Equation (5)

.

.

A

then becomes
r

where the subscript wo refers to the surface at

The boundary conditions associated with this

)*ofx (7)

Y =0 (see fig. 1).

moblem are that the
velocity at the walls must vanish (the no-slip condition for tiscous
fluids) end that the temperature must vary linearly along the walls.
(Note that the latter condition implies that the temperature gratients
along the walls and hence the sxial
constant.) In order to satisfy the
(7), the temperature must be of the

T*(X,Y) =

heat flux along the wsll-must be
temperature conditions and equation
form

AX + T(Y) (8)

Mathematically, the boundary conditions are formulated as

U(0) =U(d) =0

T*(X,O) =AX+ T(0)

(9)

(lo)
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*

. Substituting equation (8)
yields

d%

and

T*(X,d) =AX+

into equations

5

T(d) (11)

(7) and (6), respectively,

(12)

(13)

where

e sT(y) - T(o)

Since the left side of equation (12) is a function of Y alone
and the right side 1s a function of X alone, it is clear that each
side must be eqyal to a constant. Thus, equation (12) can be written as*

.

or

(14a)

(14b)

The temperature now appears in egyations (13) and (14) as f3 which
is independent of the longitudinal coordinate X, and hence the thermal
boundary conditions canbe written as

To

e(o) so

e(d) =T(d) -T(0)s ewl

nontimensionalize equations (14) and (13), let

(15)
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y.yd r (16)

@s? Ade=&f.&## =~T J
in reference 1, but here the
based on Ad rather than on

the new dimensionlessparameter presented

Grashof nuder is mdll?iedbecause it is
a temperature difference, that is$

$fXd4A
GrA Hence, equations (14), (13), (9), and (15} become

= ~“

U7’ +- T = cx~

T“ - RaU+(U’)2+tiA=o

u(o) =U(l) = o

T(o) = (1

KA~l
T(l) .~

(17)

(18)

(19)

(20)

(21)

where the primes denote differentiationwith respect to y,
Ra = (1/T) PrGrA is-a modified Rayleigh criterion or mmiber (see p. 105,

cd A ‘lhtiat- 7

ref. 8), a= QdkA is the dhnensionless heat source par=eter, and

results in

between”equatiogs (17) and (18)

Rau -~A=() (22)

.

.

.

.
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r with the boundary conditions

. u(o) = u(1) = o (23)

.

u“(0) = a~ (24)

u“(1) = (C - ewl/Ad) KA = -A (25)

where m = 1 - 8w/CAd. The constant C which appears as a parsmeter in

the boundary-va3ue problem described by equations (22) to (25) merely
specifies the temperature level (see eq. (17)) of the problem. In order
to define ccanpletelythe temperatures and velocities, this constant must
be related-in some way to the physics of the problem. From equation (14b)
it can be seen that C could be determined from the pressure gradient
along the ch~dj that is, C is essentially connected with the end
conditions to which the channel is Subject. Since the pressure gradient
may not be known a priori, in the subsequent section deallng with the
solution of the present problem C will be related to the end conditions
by the mass flow in the channel, which remsins invarient over the entire

● length of the channel.

Note that solution of the preceding boundary-value problem will
yield velocity snd temperature distributions for both natural-convection
and combined natural- and forced-convection flows. The forced-
convection pressure gradient merely alters the magnitude of the constant
c. A discussion of such a superimposed flow problem under special con-
ditions is given in reference U.

Seversl interesting observations can now be made concerning these
equations. First, comparison of equation (22) with the corresponding
equation h reference 1 shows that they are identical except for the
third term in equation (22), which does not.appear at all in the equa-
tion in reference 1. This term stems from the convection term in the
energy eq~tionj hence, in the present problem energy convection effects
will be included. The energy convectionterm vanished identically in
reference 1 because of the assumption that the velocity and temperature
profiles were tidependent of the axial coordinate. Second, since the
convection term appears with a coefficient, another Mmensionless param-
eter (Ra, the modified Raylei.ghnumber) is associated with this problem
and its influence on the results must be studied. Finally, the condi-
tions of the problem require that the temperature be of the form
T* = AX + T(y) (see eq. (8)), and hence the longitudinal heat flux is
everywhere constant.
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The boundary-valme problem
written in more convenient form

T

Hence

-iv
v + Ra

NACA TN 3141

stated in equations (22) to (25) can be
by defining

=Ra U-dfA (26)
*

;a (YI)2 = c);-— (27)

●

;(0) = ~(l) = - &A (28)

7“(0) = + Ra CKA v“(l) =+m RaCKA (29)

Solutions of the I!uundary-ValueRroblem

Equation (27] is nonlinear (the nonMnear term is due to the fric-
tional or aerodynamic heating) and therefore, as
of successive approximationswill be employed to
this end, equation (27) is written

in reference 1, a methd
find.its solution. To ..

.—

o

where n = 0,.1 denotes the particular term in the
V=vo+vl and V:l = O. Let

.
1-V=—v
64

q=2y-1

R
Ra

‘m .

>

(30) - ._

approximation ~
—

(31)
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.
Equations (33), (28), and (.29)become) resPectiv*~

.
Viv~ +Rvn -

;(%-1)2 = o
(32)

Vo(-1) = Vo(l) = h (33)

v~(-1) = J@ ~~(1) = mJ@ (34a)

Vn(-l) = Vn(l) = V:(-1) = v:(l) = o n+o (34b)

where the subscripts now denote differentiationwith respect to q.

y Zeroth-order approximation. - In the zeroth-order approximation,

~ the nonlinear term which is associated with the frictional heating does
not appear and the problem then consists of solving the equation

.
v&+Rv =0o

.
subject to the boundary conditions

Vo(-l) = Vo(l) = A

v;(-1) = J@ v;(l) = d~

For stiplicity of computations the solution can be obtained
symmetric sxd antisymmetric functions of
eter R (or Ra), by setting

q, depending only

.~vm+@4v01+4!14v02
‘o 2 2

(35)

(36)

(37)

in terms of
on the param-

(38)

.

.

where the boundary conditions to be satisfied by the various V.j (where

J = O, 1, 2) are given in the following table: “

1 7
&bscript V(-1) v(1) v“(-1] v“(1)

00 1 1

01 0 0 -g ;

02 0 0 @ G
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‘he ‘met‘om ‘oj must each sat,isfyeqyation (35), which has the general
7

solution for positive values of the Rayleigh nunber
.

where

e=i+l

g= i-1

and

= R1/4/@r

Using the boundary conditions to evaluate the constants in equation (39)
and ~ressing the solution in terms of real products of circular and
hyperbolic functions show that

’00 =

+

’01

’02 =

Note that Vw

1 (cosh r cos r cosh rq cos rq
cosh2r + cos2r - 1

,-
—

sinh r sin r sinh r~ sin rq) .(40)

1
2 (cosh r sin r sinh rq cos rq

cos r - cosh2r

sinh r cos r cosh r? sin rq)

1
(cosh r cos r sinh rq sin rq

cosh2r + cos2r - 1

sinh r sin

and V02

symmetric function of ~.

for various values of Ra

(41)

r cosh r~ cos rq) (42)

are symmetric functions and Vol is an anti-

These “universal” functions vOj are @Ven

in table I.
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.

First-order approximation. - In order to include the effects of
frictional heating to a first order, let n = 1 in equation (32). Thus

~+Rv
1 = * (v~)z = f(n) (43)

where, in view of equation (38), f(y) is given by

The boundary

+EkLL.QEv
4

622 + AJ(m - l)v& V&l +
1

~ V61 #2
2

(44)

conditions on vl =e

VI(-1) = Vi(l) = V:(-1) = v:(l) = o (45)

Once again, to obtain ‘universal-type” functions let

=A2V10 +AJ(m+ l)v~ + ~ V12
‘1 4

+~v13+M(m -l)v14+=v15 (46)
4 2

In view of the form of equations (43) to (46), the functions Vlo, VU,

V129 ‘d ’13 are Smtricj and V14 and v15 are antisyrimetric

functions. Each of the functions vU(k=O,l, . ..5) will bea

solution of equation (43), but where the nonhomogeneous term is only
the related part of equation (44) (for example, the first term on the
right-hand side of eqmtion (44) is associated with the Vlo solution

and SO forth).

A particular solution of equation (43) can be constructed from
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where G is the Greents function which satisfies the homogeneous part of
*

equation (43) and the conditions G(0) = Gf(0) = G“(0) = 0, G“~(0) = 1.
These arbitrary conditions were applied to yield a simple form for the
Greents function. Hence

.

J(-J

(47)

Note that if the fk is a symmetric function, (vlk)p is also SymUletriCj

and if & is antisymmetric, so is (v~~)p. horn the boundary conditions,
equation (45), it can be seen that vu must be either symmetric or anti-
symmetric. Therefore, if & is symmetric, the complementary solution
used with the particular solution must be S-tricj and if & is anti-
symmetric, the complementary solution must also be antisymnetric. These
complementary solutions are, respectively,

P
E.-=

8r3/[ sinher (1 - ~] fk(~)d~

“o

(48)

(49)

(50)

(51)

‘o

The VU solutions can be written explicitly in real form (by proper

conibinationsof particular and complementary solutions) and are given in
equations (Bl) to (B6) in appendix B. Values of VU for several R

(or Ra) are presented in table 11.

Velocity and Temperature Distributions

Now that the various VN are known explicitly, they can be inserted

into equation (46) to yield V1. The sum of_ V. (as given by eq. (38))

.

.
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and Vl then forms the solutzon which includes frictional

to a first order. BY means of the vsrious transformations

13

heating effects

made. the solu-

tions of the given b&ndary-val.ue problem (eqs. (22) to (25)) o; the
&bnensionless velocity distributions to the zeroth and first approximation
sxe, respectively,

KA

[

m- 1) Ra@c (m+ 1) Ral/2C
%== -a V()()+

2
Vol + 2 1v02+a (52)

[ 1
KA2

.+ 64(v0 + V~) + ~

[

1/2C(m+. 1) ‘U
‘1 ‘%+6~a m2vlo-aRa

1 2Rac2+(~-j (m + l)%aC2
’12 + 4

V13 - (m- 1) aRal/2Gv14

(m2
+

- 1)RELC2
2 1’15 (53)

where the vOj (j =0, 1, 2) ae @venin equations (40) to (42) and the

VN (k=O, 1, 2, 3, 4, 5) are given inappendix B.

In principle, higher-order approximations could be obtainedby con-
tinuing the procedure described. However, the results become very un-
wieldy. Therefore, beyond the range of applicability of the zeroth- and
first-order approximations (that is, in the range of large frictional
heating effects), the complete boundary-value problem should be solved
numerically; some discussion of these numerical results relative to the
zeroth-

To
related

‘60=-

andfirst-order approximationswill be presented subsequently.

determine the temperature distributions, recall that they are
to the velocity distributionsby equation (17) and that
#2 Ral/2

4 ’02 and %2 = 4 ’00 ‘o ‘hat

‘O=~A-%=KA
k -*PO2’2(m- 1’c”’’+-Rd’2vJ~

(54)
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and
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KA2
=CKA-u; =TO— —

[

~2vlt aRal/2 C(m + 1) v~
‘1 16Ra 10 -

- l)2RaC2 (m+ l)%aC2
+ (m VY2 + v~3 - (m - 1) aRal/2 Cv~4

4 4

-I-(m
- l)2Rac2 v,,

2 151 (55)

where the primes on the u-functions denote Uferentiations with respect
b y and on the v-functions denote differentiationswith respect to T),
and the explicit forms of the second derivatives appearing in equations
(54) and (55) are presented in equations (B7) to (B13) of appendix B.

Thus, solutions of the original boundary-value problem in terms of
u and T are known to zeroth- and first-order approximations,that is,

neglecting frictional heating and incluting its effects to a first order>
respectively. These solutions are, however, given in terms of the param-
eter C!(recall that m is also a function of C through eq. (25)).
Therefore, to relate C to the physical problem the dimensionlessmass
flow in the channel is

Neglecting aerodynamic
order approximation as

/’1

defined as

f

1

~. Uody (56)

o

heating, eqpation (56) becomes (using the zeroth-
givenby eq. (52))

or

-1-Cos

-a+

(57)

(58)
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.
(For large Ra the expressions in parentheses in eqyation (58) reduce
to 1 and -1, respectively.) Substitution of C as determined into eqW-
tions (52) to (55) then yields the velocity and temperature distributions.
for any case if M, 6w1/Ad, Ra} ~$ and KA me kn~o ~ote~ then> that

the mass flow is an independent parameter of the problem, and hence could
be due in part to a forced flow. For a given confi~ration and fluid the
last four of these parameters sre specified, so that equation (58) re-
lates C to the mass flow M, that is, the temperate lev~ and the
mass flow through the channel are rel.ated~as iS onW reasonable in flOWS
Of this t~.

Asymptotic solutions. - The solutions presented in the previous sec-
tions are valid (to the proper order of approximation) for all values of
the parameters of the boundary-value problem. Eoweverj from physical
considerations, it can be seen that in many Practical oc~rence~ of the
phenomenon under consideration, the psrameter Ra may become very large
(of the order of 104 and higher). It is therefore appropriate to examine
the asymptotic character of the boundary-value problem. TO this end it
is convenient to write equations (22) to (25) as

(59)

=(0) =:(1) = o (60)

2’(0) = I at(l) = m (61)

where

u = CKA; (62)

For very large Ra, eqpation (59) is of the boundary layer type (see ref.
10). Therefore the velocity and temperature profiles will have very large
gradients near the walls, and thus the asymptotic solutions will yield the
velocity and thermal boundary layers with essentially constant conditions
givenby the inviscid solution ~ = a/CRa in the center of the channel

associated with large Ra flows. Hence, expanding the coordinate normal
to the wall, as is done in boundary layer theory, requires that

.—

~=Ra l/4y (63)

ii=Ra
-1/~

(64)



16
.

The asymptotic forms of equations (59) to (61) are

v— +v - %$*=0
Ra CRa

NACA TN 3141

(65)

.

.-

V(o) = o (66)

{

1 for the wall at temperature Two
v=(o) =ii= (67)

m for the other wall at temperature %1

v(+ ‘v+=) = o (68)

where the subscripts denote differentiation. Note that the conditions
expressedby equation (68) replace the boundary conditions at the second
wall and require that influences of one wall do not affect the other.
Thus ~ can be considered as the coordinate normal to the f_fist(or left-
hand) wall (that is, the one correspxding to Y = O) and -y will be
the coordinate normal to the other wall, which is at Y = d. Hence, use
should be made of the proper part of equation_ in each solution. .

From equation (65) it can be seen that the frictional heating effects
will be negligible for large Ra unless CK~Ra (or C@fXd/CP) is at .

least of unit order of magnitude. It should perhaps be pointed out here,
in contradistinctionto the qualitative discussions in references 1 and
12, that the frictional heating is important only if essentially the
ratio of K (based on any appropriate temperature) to Ra is of unit
order of magnitude or larger, as can} in fact, be verified in general.
Thus it shouldbe noted that the discussions in those references hold
specifically only if Ra is of unit order or smaller or if Ra does not
appear as an explicit parameter of the problem (as in ref. 1, for example}.
For the range of conditions and physical properties of fluids being con-
sidered, it is unlikely that CK~Ra will he of unit order for a flow

generated in a gravitatio~l field alone with large Ra. Therefore, un-
less the natural-convectionflow is being generated by a body force con-
siderably stronger than gravity, the ratio of the volumetric expansion
coefficient to the specific heat at constant pressure is unusually large,
or there is considerable forced flow (to increase C), the frictional
heating effects will not be important for large Ra. (Of course, the
possibility always exists that some unusual fluid will be employed whose
physical properties are such that CKA/Ra will be of such a magnitude

that the frictional heating effects will be important for large Ra even
in a gravitational field. Liquids near their critical state may be rep- .

resentative in this respect (see ref. 13)). Furthermore, it can be seen

.



NACA TN 3141

m
from the same equation that the effects of the

portant only if a/CRal/2 is of unit ‘orderof.
This is physically reasonable.

17

heat sources will he im-

magnitude for large Ra.

Since the frictional heating effects are negligible for large Ra,
unless CK~ is very large these effects will be neglected in this sec-

tion. (A method of successive approximations similar to that described
in the previous sections couldbe applied without difficulty to eq. (65)
if these effects are of consequence.) Therefore, letting

F=v- l/2a/CRa , equations (65) to (68) become, respectively,

T—+T=O (69)

T(o) = -* (70)
CRa

T=(O) =E (71)

. V(CO).~~= () (72)

The solution satisfying equations (69) to (72) is.

To find the temperature distribution
(73) is necessary, and this is given

For
velocity

large values of
and temperature

(73)

the second derivative of equation
by

(74)

the Rayleigh number Ra, then, the dimensionless
distributions are given by

u
. =-~+ ,:./2)

(75)

-
and

. (76)
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Solutfon of Special Case Simulating m Enclosed Channel

There is considerable interest in the natural-convectionflow in a
completely enclosed rectangular region. In reference 7, the natural-
convection flow of fluids containing heat sources between two parallel
planes is considered (as is the case here also); but there, in order to
simulate an enclosed rectangular region, it is further specified that the
net mass flow be zero and that the walls be at the same temperature. This
problem is treated in an approximate manner in reference 7 in that the
velocity distributionwas postulated without regard to the equations of
motion and, hence, it would be desirable for comparison purposes to obtain
a more exact solution for this special case from the solutions found
herein.

For zero net mass flow in the channel the parameter C can be deter-
mined directly from the other parameters of the problem and equation (58).
Thus

e
‘1 +co = ( )[ (cosh 2r + cos 2r

‘d @:al/4

a
)]

sin 2r + sinh 2r - ~
o sin 2r - sirih2r ~al/4 cosh 2r + cos 2r

(77a)

where the superscript denotes the zero net mass flow and the subscri~
designates the order of the approximation. It is interesting to note
from this equation that for no internal heat sources (a = O), zero net
mass flow in the channel can be obtained when C = ewl/2k3. However, to

obtain the solution for the special case simulating flow with heat sources
in a completely enclosed region with walls of equal.temperatures from the
solutions presented in the previous sections, tlwa must be zero in equa-

tion (77a), and therefore

co ( )[%-cosh 2r + cos 2r i
O=’*L sin2r - Sinh 2r ~al 4

-L

( ).sin 2r + sinh 2r - 1
cosh & + COS ti

(77b)

The velocity and temperature distributions for this special case are then

obtainedby replacing C in equations (52) and (54) by C: as given by

equation (77b). Further physical significance of the zero net mass flow
case can be hferred frcm equation (13). Integration of this equation
over the channel cross section shows that for no net mass flow all the
heat generated internally (by heat sources andby aerodynamic heating if
the latter is significant) in a given cross section must be transferred
to the walls.

.

.

.

.

.
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.
Computations made for this case including frictional heating yielded

no appreciable deviations from the zeroth-order results.
.

.

Solutions for Case of Convective Inversion

An interesting aspect associated with the natural-convection
phenomenon is that the Grashof nunibercan change si~j this implies a
reversal in the flow &Lrection and is referred to as convective inver-
sion (see p. 109, ref. 8). The sign of the modified Grashof number in
the present paper canbe changed in one of three ways: J)1 by a change
of the sign of the longitudinal temperature gradient ~T /~X = A, (2) by
a change in the direction of the generating body force, and (3) by a
change in the sign of the volumetric expansion coefficient as occurs
near the critical state of a liquid (see ref. 13).

Since the mmlified Grashof number appears in the parameters KA

and Ra connected with the problem considered herein, the effects of
sign changes of the Grashof tier in the solutions2shouldb studied.
From its definition, KA is proportional to A, fx , and ~E so that

only the first will alter its sign. Note further, however, that the
. modified Rayleigh mber Ra is essentially the product of the Prandtl

number and a modified Grashof number, that is, a Grashof number which
depends on the product (Ad) of the longitudinal temperature gradient smd.
the distance between the plates. Hence, anyone of (1), (2), or (3)
given in the preceding parp.graphwill lead to a change in the sign of
Ra. For negative Ra the solutions as given in the previous sections
do not apply, and hence the foregoing boundary-value problem (eqs. (22)
to (25}) would have to be solved with negative Ra. These solutions
can be readily obtained, but it is found that with frictional heating
neglected these solutions change character with changes in Ra and that
there exist critical negative values of Ra for which the solutions
become meaningless. In an attempt to -lain these unusual results,
further interpretation of the problem must be made. Reexamination of
the messing of negative Ra shows that not only changes in the body
force direction and sign of the volumetric expansion coefficient but
also a change in the sign of the longitudinal temperature gradient A
can lead to negative Ra. If the negative Ra is attributed to the
last cause, the physical.interpretation of the unusual mathematical
results pointed out becomes clearer, because a negative A implies that
the fluid is being heated from below smd this situation leads to a
“Rayleigh-ty_pe”tistabi.lityof natural-convection flows due to the
“piling of heavy fluid on lighter fluid.” Analogous interpretations, of
course, also follow directly for changes in the body force direction and
in the si~ of the volumetric expansion coefficients. Natmsl-convection
flows heated from below between horizontal plates have been studied ex-
perimentally in some detail (see refs. 8, 14; and 15, for exsmple), and

. it was found that the flow does indeed change character (into cellular
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motion) for certain critical values of the Rsyleigh nuniber. Hence, it
is believed that the critical values of Ra found from the linearized
analysis (in that the aerodynamic heating was neglected) for negative
Ra may be analogous to those observed in actual cases. However, since
this instability leads to these additional complications smd should be
further investigated (perhapsusing the true nonlinear eqs.), the case
of negative Ra wild.not be treated further herein. It should, how-
ever, be kept in mind that if in an actual case of the configuration
considered herein the Ra is negative, the flow and heat transfer wfll
not be as predicted in this paper but should be expected to exhibit a
behavior pertinent to the “unstable-type”flows.

RESULTS AND DISCUSSION

Velocity and Temperature Distributions

The relations between the actual and dimensionless velocities and
temperatures as determined from the v=ious transformations in the
analysis (see eqs. (16)) are

(78)

(79)

.

.

.

.

where U and f3 denote the actual and u snd T, the dimensionless
quantities. For a given fluid, configuration,heat-source intensity,
and mass flow, the velocity and temperature distributions can be com-
puted from equations (52) to (55) (for Ra >O)j and for zero net mass

flow and the walls of the same temperature, by applying equation (77b)
to equations (52) and (55). These computationswill be.accurate within _ ._
the limits of the method of sdutionj that is, for moderate and small
values of Ra the solutions yield results o-freasonable accuracy for
small. ~A/ and for large Ra the zeroth-order approximationsor, even

more simply, the asymptotic solutions will give answers valid for all
~A . The range of-applicabilityof the various solutions ~resented

herein will be discussed more fully subsequeiitly.

Because the solutions were obtained in the convenientforms (eqs.
(52) and (54), for example) wherefrom the qualitative effects of the
various parameters associated with the probl=m can be studied, and since

.

“
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. tabular values of the universal functions are presented to facilitate
computations for any specific case, no etiensive detailed-calculations
will he given covering the entire range of values taken on by the psram-.
eters. Representative velocity and temperature profiles were, however,
calculated for KA = 10, m = -1, 1, and 2, a = 0, 10~ md ~oo~ and
Ra = 10, 102, 1600, and 104. In addition, the parameter C was given
the value -1 in ti the computations except those for the case simu-
lating flow in a completely enclosed region. In this way the relative
influences of the other parameters are just as apparent, but the nuniber
of computations is greatly reduced. The results of these computations
sre presented in figures 2 to 9. The contents of each specific figure
(nm&ers 2 to 9) are listed in the following table:

I KA=10

m

-1

1

2

a

o

10

100

0

10

100

0

10

100

la = 10

2(a)

2(a)

2(a)

2(b)

‘~b2(b)

2(b)

3@2(c)

2(c)

2(c)

102

3(a)

3(a)

3(a)

3(b)

3(b)

3(b)

3(c)

3(c)

3(c)

4(a)

4(a)

4(a)

a4(b)

4(b)

4(b)

4(c)

4(c)

4(c)

-JQ4

5(a)

5(a)

5(a)

5(b)

5(b)

5(b)

%(c)

5(c)

‘%(c)

10

6(a)

6(a)

6(a)

6(b)

a~b6(b)

6(b)

a>b6(c)

6(c)

6(c)

~2

7(a)

7(a)

7(a)

7(b}

7(b)

7(%)

7(c)

7(c)

7(C)

Mao

8(a)

8(a)

8(a)

a8(b)

8(b)

8(b)

8(c)

8(c)

8(c)

104

9(a)

9(a)

9(a)

9(b)

9(b)

9(b)

C9(c)

9(c)

C9(C)

aIncludes results for u
( F o;” T(2).blnclu&s results for u 2

cIncludes results for ~ or Ta.

For each triplet of parametric values (m, m, Ra) the profiles were com-
puted with f=ictiona~ heating neglected (by”eqs. (52) and (54) and de-
noted by ~ and To on the figs.), with frictional heating included

to a first approximation (by eqs. (53) and (55) and denotedby U1

and 71), and in several specific cases with frictional heating completely .

accounted for (by numerical solution of eqs. (22) to (25) using a Card-
PrograumnedElectronic Calculator and denotedby u and T). For
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Ra = 104 the asymptotic
denotedby Ua and Ta)

NACA TN 3141

solutions (givenby eqs. (75) and (76) and
are also included for KA = 10, m = 2, and

a = O and 100. The asymptotic solutions were computed from each in-
dividual wall to the channel center and then faired in to join smoothly.
From these computations any qualitativetrends obtainedby examination
of the solutions can be further substantiatedand, in addition, some
definition of the range in which the frictional or aerodynamic heating
exerts a large influence can be made. Calculationswere also made for
the special case simlating a completely enclosed region in which there
is no net mass flow and the walls are at the same temperature by applying
equation (77) to the appropriate solutions. These curves are given in
figures 10 and 11. The velocity and temperature profiles (particularly
for RaS 104) are qualitatively similar to those determined experi-
mentally in reference 16.

Effect of different wall-temperature configurations (m varying)
and heat sources (u varying). - From equations (52) to (55) and their
related universal functions, it can be seen, as expected, that an in-
crease in the wa~ temperat~e parameter m- or an increase in the heat-
source parameter u results in larger velocities and higher tempera-
tures. These trends together with that of increasing net mass flow, as
representedby the area under the u-curves, with m and a can be ob-
served on figures 2 to 9. It can alsobe seen from figures 6 to 9 that
if sufficient heat is generatedby the heat sources, the direction of
heat transfer will be changed. In agreement with the statements made in
the section dealing with the zero net mass-flow case, note from fig-

[

ures 2(a), 3 a), 4(a), and 5(a) that if aerodynamic heating is neglected
for m = -1 since C = -1) and a = 0, there is no net mass flow. In
general, the velocity distributionsbecome more symmetricalwith the
larger a (see figs. 2(a), 3(a), 4(a), and 5(a), for example) because
the heat added uniformlyby the heat sources counteracts any asymmetry
imposed by the wall thermal conditions.

Effect of the modified Rayleigh number (Ra). - Examination of
the solutions (eqs..(52) to (55)) shows that the velocities and tem-
peratures decrease with increasing values of the mo&ified Rayleigh
nuniber Ra. This trend can also be seenhy coinparisonof corresponding
curves in figures 2 to 9, and even by comparing with the curves in refer-
ence 1 which are for Ra = O. For large Ra it can be seen from fig-
ures 5(b), 5(c), 9(b), and 9(c) that the velocity and temperature pro-
files take on a ‘boundary-layerform.” Asymptotic solutions computed
for Ra = 104, KA = 10, m = 2, and a= O and 1(X)are also presented
on figures 5(c) and 9(c), and these very closely approximate the more
exact solutions. Hence, for large Ra the asymptotic solutions can be
employed to yield reasonable results much more simply. For the case

.

● ✍

.
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where m = -1 and a = 0, increasing the mo~ied Rayleigh number changes
the temperature distribution from essentially the conduction profile
(that is, an almost linear distribution) at Ra =lOj the increased
effect of the convection is then apparent for the larger values of the
Rayleigh number. It is interesting to note that for KA = 10, G= 10, .
and m= -1, 1, and 2, changes in the Rayleigh nuuber can so affect the
temperature distributions that the heat flow direction from one or both
the walls can be altered. (Compare corresponding parts of figs. 6
to 9.) This point will be more graphically portrayed in the subsequent
discussion of Nusselt numbers.

The velocity and temperature distributions (see figs. 10 and 11)
for the special case considered herein of zero net mass flow and walls
at the same temperature are not in general appreciably altered in shape
by increases in Ra although the velocity peaks vary inversely with the
Rayleigh number. The shape of the velocity and temperature profiles is
seen to be qualitatively the same as that assumed in reference 7.

Effect of frictional heating. - By comparing the profiles presented
in figures 2 to 9 computedby neglecting frictional heating (denotedby
the subscript zero) with those computed including the aerodynamic heat-
ing to a first order (denotedby the subscript unity), the effect of the

. aero@mmic heating on the velocities and temperatures can be studied.
Numerical solutions obtained of the complete boundary-value problem
(eqs. (22} to (25)) in which the frictional heating was entirely taken

.
into account are also included (with no subscripts) (see preceding table)
on figures 2(b), 2(c), 4(b), 6“(b),6(c), 8(b), 10, and 11 for comparisons
with the approximate solutions.

In accord with the discussion on the asyqtotic solutions, it can
be seen that when KA is small compared tith Ra (recall that C = -1
in these calculations) the aerodynamic heating effects are negligible.
Since no computations were made herein for KA> 10, the computations
made for Ra = 1600 and 104 show no deviation between the zeroth and
first approximations, and these are also coincident with the numerical
solution (see figs. 4(b) and 8(b)). Hence, in the range KA/RaKc 1,
the zeroth-order approximations will yield accurate resultsj if, in
addition, Ra>> 1, the asymptotic solutions provide a simple means of
obtaining the velocity and temperature profiles. Note that the param- ‘
eter KA serves merely as a scale factor in the zeroth-order solutions.

In the range where KA and the Rayleigh number are of the same

order of magnitude, the frictional heating affects the results to greater
or lesser degree depending on the particular amount of heat addition as
specified essentially by the parameters m and m (figs. 2, 3, 6,
and 7) and, hence, the first-order approximations should be employed in
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.

.—
R

this range. Comparison of the first-order solutions with the several
numerical solutions of the entire boundary-value problem shows close
agreement for the cases computed. Hence, unless the conditions are
more severe than the most efireme conditions for the range of parameters
considered herein as represented by K~Ra = 1, m = 2, and a = 100,
the first-order solutions will yield results which include the effect
of aerodynamic heating of reasonable accuxacy. In this range where its
effects are importsnt, this frictional heat, of course, acts dust as do
the heat sources and leads to increased velocities and altered tempera-
ture profiles and, consequently, different heat-transfer rates (figs. 2,

.

3, 6, ~nd7~.

For the special case simulating flow in a completely enclosed re-
gion, the aerodynamic heating did not affect the results appreciably over
the range of parameters under consideration. A numerical solution com-
pletely including the effects of aerodynamic heating was made for
Ra = 10j it can be seen in figures 10 and 11 that this solution coin-
cides with the zeroth-order solution, which neglects the effect of fric-
tional heating.

The complete consideration of frictional heating (as in the numeri-
cal solutions) for the problem discussed herein, just as for the case
(essentially Ra=O) reported in reference 1, leads to the two results
(a) that there tists a critical set of conditionsbeyond which no solu-
tions exist, and (b) that where solutions exist there are two solutions
for every set of admissible parametric values. Examples of these second
Solut“

IT
s are presented in figures 2(b), 2(c), 6(b), and 6(c) (denoted

byu2 and T(2)), and it can be seen that the velocities are more
than 10 times as large as the first solutions and the temperatures are
much greater than the corresponding first solution temperatures. These
last unusual results cannot be predicted from the solutions obtainedby
successive approximations as described herein, but are found from numeri-
cal solutions obtained by mean= of a Card-ProgrammedElectronic Calcu-
lator. At present the significance of the second solutions is not ex-
plained, although it is felt that they are intimately connected with the
unique regenerative action of the frictional heating in natural convec-
tion. The existence of the critical conditions appears to be similar

. to the thermal choking

The heat-transfer

phenomenon.

HEAT TRANSFER

Nusselt Numbers

coefficients for the natural-convectionphenomenon
treated here can be expressed in terms of Nusselt tiers. The-Nusselt
number is here defined-as

m~

—-

hd

()

1 aT*
‘=1 ~O,dk

.
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.
where the double subscript signifies that the temperature
to be evaluated at either Y = O or Y = d, dependiw on

● consideration.

In terms of the dimensionless quantities,

25

gradient is
the wall.under

(80)

The temperature gradient can be found from the zeroth-order solutions,
and the Nusselt numbers can be computed on this basis from

.

N% =

+ C!(@l)Ral/2

2

%1 =

+ C{m+l)Ral/2

2

(sinh2r -

1
2 2

[

a(sinh 2r + sin 2r)

coshr+cosr-1

1
sin 2r) -t

C(m-l)Ral/2

}

(sinh 2r+ sin 2r)
2(cos2r - cosh2r)

(81)

f r

i

-1

* cosh2r+cos2r-1 k

(sinh 2r+ stn2r)

1(sinh2r - sin2r) +
C(m-l)Ral/2

2(cos2r - cosh2r) 1(sinh 2r + sin 2r

(82)

where the first subscript denotes that zeroth-order approximation is
used, and the second denotes the wall with which the Nusselt number is
associated. (Eqs. (81) and (82) are, of course, specifically for h
positive.) Note that these zeroth-order Nusselt nu?ibersare independent
of KA. When CKA is of the same order of magnitude as Ra, the zeroth-

order approximation has been shown to be haccuratej therefore improved
Nusselt nuniberscan be obtained by using the appropriate T (first-
order approximation) solutions and, for the same conditions as for
equations (81) and (82), the Nusselt numbers can be computed from

KA
Nqo = N~o +

[
a~-h- CaRal/2 (m +

646 Ra7~4

+ c2(m+ l)2Ran4 +C(m -
~ l)aRal/~ -
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KA
lhl~~= WI - [% CaRal/2(m + 1~2 +

C2{m -

na- 4 l)2Ran3

+
C2(m + l)2Ra~

4
4+ C(m - l)aRal/~ + - %] (84)

where the

(B-43)to @48) inappendix B.

various ~i in equations (83) and (84) are given by equations

Computations of the Nusselt numbers were made over a range of
values of Ra from equations (81) to (84) for KA = 10, m = -1, 1, and
2, and a= O and 10 where again C was taken to be -1, and the re-
sults are presented in figures 12 Ud 13 for the wall at Y = O and
Y = d, respectively. The figures show that for the wall at Y = O the
Nusselt numbers decrehse, in general, with increasing Ra, and for the
wall at Y = d the Nksselt nuubers increase tith the modified Rayleigh
number except for the case where m = -1. For KA =10 and a=lO,
the Nusselt number changes sign with increases in Ra because of the
variation of the temperature profile with Ra, as was previously noted.

Figures 12 and 13 also demonstrate clearly the effect of the aero-
dynamic or frictional heating. This effect, in accordance with all that
preceded, is extremely pronounced for low values of the Reyleigh number
(that is, when K/Ra is of unit order of magnitude).

Flow in an enclosed region. - For the special case simulating flow
in a completely enclosed region (M = 0, m = 1, and a# O), the calcula-
tions for the temperature profile were extended over a larger range of
Ra and plotted in figure 14 as the ratio @ of the temperature differ-
ence to that for pure conduction, as was done in reference 7. The con-
duction temperature difference used in @ is the channel center-to-
wall difference sub~ect to uniform heat generation by sources and is
equal to a@8 . The temperature profiles ccmputed in an approximate
manner in reference 7 are ccmpared with those computed more exactly by
the method reported in this paper, and it can be seen that the dis-
crepancy becames qtite apparent for values of Ra = 104 and above.

The N1 in reference 7 is related to Ra by Ra =$ NI; hence, for

most liquids N1 and Ra are identical. lfT#l,T is merelya
scale factor. It can be seen from figure 14 that for Ra z 104, the
temperature gradients at the wall are all almost identical, and hence,
even if the teziperatureprofiles themselves were not identical, the
heat transfer computed by the two methods wouldbe in reasonable agree- ._

,
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.
ment. The vsxiations of the dimensionless temperature vsriable

‘o
(ratio of center-to-wall temperature difference to that for pure corL-

. duction) as used in reference 7 with Ra as given by the two methods
are also compared in figure 15, and hence the quantitative limits of
the approximate method can be seen.

CONCLUDING REMARKS

An analysis was made of the flow subject to body forces between two
parallel plane surfaces oriented in the direction of the generating body
force along which the temperature is specifiedto vsry Mnearly. The
solutions for natural convection and those for conibinednatural and
forced convection were found to be essentially the same. It was found
that a modified Rayleigh tier (protict of I&andtl -md modified Grashof
numbers) in addition to the parameter KA was of significance in this
problem. Solutions for the velocity and temperature distributions sre
given in terms of “universal” tabulated functions. Detailed velocity
and temperature profiles were co-ted and it was found that, in general,
the veloctty and temperature differences increase with the wall tempera-
ture parameter and with additional heat due to heat sources. The veloc-
ities and temperatures decrease with increasing values of the modified
Rayleigh number. When the ratio of CKA to the modified Rayle@h num-
ber is of unit order of magnitude, the frictional or aerodynamic heating
appreciably affecvs the velocity and temperature distributions. Aspptotic
solutions for large Ra are presented which make computations in this
range relatively simple. For any given set of the parameters, complete
consideration of frictional heating implied the existence of two flow and
heat-transfer states and implied that no solution exists beymd certain
critical values.

Consideration was given to a special case sinmlating the natural-
convection flow of fluids with heat sources in a completely enclosed
region with the walls at the sane temperature. Computations from the
solutions for this special case demonstrated that an approximate method .
developed in another paper should yield reasonably accurate results as
long as the modified Rayleigh nuniberis less than 104. The effects of
aerodynamic heating were found to be negligible for this case.

Study of the convective inversion aspect of the present problem led
to the inference that for negative values of the Rayleigh number, addi-
tional complicationsarise because of an instability (due to heating from
below) of the flow which mst be more thoroughly investigated.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, Deceniber29, 1953
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APPENDIX A

SYMBmS

The following notation is used in this report:

longitudinal temperature gradient

constants in eq. (39); i = 1, 2, 3, 4

constants defined byeqs. (B14) to (B35); i = 1, 2, 3,...22

constant in eq. (17)

constants defined by eqs. (B36); i = 1, 2, 3, ...6

constant defined by eq. (77b)

constant in eq. (14b)

specific heat at constant pressure

specific heat at constant volume

constatis defined by eqs. (B37); i = 1, 2, 3) ...1O

characteristic length (specificallydistance between plates)

constant definedby eq. (50)

constants definedby eqs. (B38); i = .1,2, 3, ...6

constant, (i+l)

constant defined by eq. (51)

negative of X-component of body force per unit mass

Green’s function -.

modified Grashof nunber, ~fx Ad4/y2

constant, (i-1)

.

,

.

.
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h

hi

J

‘A

k

Li

M

Mi

m

z

Nu

NI

P

B

Q

Qi

R

Ra

r

T, T*

u

u

z

heat-transfer coefficient

constants defined by eq.

1/2CKA/64constsntz Ra

dimensionless parsm&er,

(B39); i= 1, 2, 3, 4

thermal-conductivity coefficient

constants defined by eqs. (B40); i = 1, 2

dimensionless mass flow

constants defined by eqs. (B41); i = 1, 2, 3, 4

constant defined by eq. (25)

constant defined by eq. (64)

Nusselt muiber, hd/k

modified Rayleigh criterion as given in ref. 6, yRa

pressure

Prandtl nuder > ~P/k

heat due to heat sources

constants defined by eqs. (B42); i = 1, 2, 3,...8

constant, Ra/16
.

modtiied Rayleigh number, # ~ GrA

constant, R~~4/@

temperature

velocity

dimensionless velocity

tinsiotiess velocity, ~/~A



30 NAM TN 3141

v

x

Y

a

P

‘r

v

e

@o

dimensionless velocity defined by eq. (61)

dimensionless velocity, V -
*

dimensionless velocity, ~/64

dimensionless velocity defined byeq. (26)

longitudinal coordinate

transverse coordi~te

dimensionlesstransverse coordinate

l/4ydimensionless transverse coordinate,Ra

dimensionlessheat-source pmmeter, Qd/kA

Pwl
lp

coefficient of volumetric eqansiony p
P

ratio of specific heats

dimensionless coordinate, 2Y - 1

temperature difference, T - Two

constant, -aK~64

absolute viscosity coefficient

kinematic viscosity coefficient

dummy variable

density

dimensionless temperature difference

dimensionless temperature difference, @T/d.fA

dimensionless center-to-walltemperate clifference, 8(T)rl/~~A

constants in eqs. (80) and (81); i = 1, 2, 3,...6

.

.

.

.
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Subscripts:

a asymptotic solution

ca complementary antisynmetric solution

Cs complementary symmetric solution

I inviscid solution

n order of approximation

P particular solution

Wo conditions at y = O

‘1 conditions at y = 1

0 zeroth-order approximation

1 first-order

Superscript:

(2) second flow

approximation

and heat-transfer state

31

.
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API?ENDIXB

FIRST-C3RDERSOLUTIONS

The explicit forms of the first-order solutions to be used in equa-
tion (46) sre:

VI()‘

+

VII =

+

V12,=

+

+

V13 =

+

V14 =

+

1-

B4 sinh 2rq sin 2r~ + B5(cos

‘+ [B6 cosh rq cos rq +%

1
B3 SiIlhti~ Si?lfiq - 15 B4

*[BaCosh‘v c“’‘7 +‘g
Blo cosh 2 rq co. 2 rq + BU

B12(cosh Zrq -I-cos 2rq) - 15

7-

sinh rq sin r~ +B3 cosh 2rrIcos Zrq

2r~ -
1

cosh 2rq) + 15 B3 (Bl)

sinh rq sin r~ - B4 cosh 2rrjcos 2rq

(B2)

sinh rq sin rq

sinh 2 rq sin

1‘lo

~lB13 cosh r~ cos rq + B14 sinh r~ sin

B3 cosh 2rq cos 2r9 - B4 sinh 2rq sin 2r~

B5 (co. 2r~ - cosh 2r~) - 15 B~

1

-7i~a3 2 ‘M
sinh r? cos rq + B16 cosh rq sin

B17 sinh 2rq cos 2rrI+

’19
sin 2rq + B20 sinh

B18 cosh 2r~ sin 2rq

1
2rq

(B3)

(B4)

(B5)

.

●

.
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.

.

.

.

1
’15 [

sinh r~ cos rq + B22 cosh rq sin r~= ~B21

- B18 sinh 2r~ cos 2r~ +B17 cosh 2r7 Sin 2r7

+B20 sin 2rq
1

- B19 sinh 2r9 (B6)

The constants Bi(i = 1, 2, ... 22) appearing in the preceding equations

are readily computed for a given Ra. In the s~sequent section of this
appendix these constants are written explicitly in a form suitable for
reasonably rapid conqnatation.

The second derivatives appearing in equations (54) and (55) are

-&l/2

[cosh r sin r cosh r~ sin rq
4(cos2r - cosh2r)

1sinh r cos r sinh rq cos rq

&~2 cosh rq cos rq - B1 sinh r~ sin r7

4B4 cosh 2r~ cos 2r~ - ~13 siuh 2r~ sin 2rq

2B5(cos 2r7 + cosh 2r~)]

[
*B7 cosh ~TIcos rq - B6 sinh r~ sin r~

1
4B3 cosh 2rq cos 2rrI+ 4B4 sinh 2rq sin 2rq

[
*B9 cosh rq cos rq - B8 sinh rq sin rq

4BU cosh 2r~ cos 2rq - 4B10

1~12(cosh 2rV - cos 2r7)

sinh 2rq sin 2rq

sinh rq sin r~

4B4 cosh 2rq cos 2r~ + 4B3 siuh 2rq sin 2rq

2B5(cos 2r~ + cosh 2rq~

(B7)

(B8)

(B9)

(B1O)

(Bll)
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~y4 . &
[
-B15 cosh rrjsin rq + B16 si~ rq cos rq

+

‘%7

%19

cosh 2rrIsin 2rq + %8 siti 2r7 cos 2rV

1sin Zrq + 2B20 sinh 2rq

[
& -B21 cosh rq sin rq + B22 sti rv cos rv

4J318cosh 2rrISin 2rq + 4B17 sinh 2r~ cos 2rq

2B20 sin 2rq
1

- 2B19 sinh 2r~

Constants for First-Order Approximation

(B12)

,

(B13)

The constants appearing in equtions (Bl) to (B13) are written in
an expeditious form for computing as follows:

‘1 ‘

+

B3 =

B4 =

135=

‘6 =

.

.

-— ~ -3D1+D2)E1 + (D3-~4)E2 + 2(D-3+D4)E3+ 2(D1+D2)E4
:

(D3+D4)E5 -
512 ‘lh2

(Dl+D2)E6]+ ~ ~ (B14)

~ -D E + 2(D~+D2)E3 - 2(D3+D4)E4-+ D3-3D4)E1 + (ml 2) 2
%

(D1+D2)E5 -
128 (%2 +h22)(D3+D4)E6]-Y Ml

32 h1h2

-Ry .

(h12 -h22)

~ Ml

16 (h12 +h22)-—
5 ‘1

~~3D1-D2)E2 + (D3-3D4)E1+ (D3+D4)E6 + (D1+D2)E5

~ ‘h22 - “2)1

(B15)

(B16)

(B17)

(B18)

--—

.

.

(B19)
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.
128 h1h2

% = ~[(-D3+3D4)E~ + (3D1-D2)E1 - (D1+D2)E6 + (D3+D4)E~ + ~
4

(B20)

B8 =-~
L2 ~

D5-D6-ZD4)C1 + (2D1+D7-D8)C2 - 2(D5+D6)C3 - 2(D7+D8)C4

4M ‘lh2
32(M5+M4)

+(D5-D6+2D4)C5 + (-2D1~-D8)C~+ ~% - 5M2
(B21)

B9.&-
%2[(2D~+D7-D8)C~ + (-D5+D6+~4)C2 - 2(D7+D8)C3 + 2(D5~6)C~

1

64(M5-M4)
+ (-2D1+D7-D8)C5+ (-D5+D6-2D4)C6+ 15M2

(B22)

32 hlhz
Blo =

l%
(B23)

16(M5-M4)
Bus.

l%
(B24)

.
16(M5+M4)

%2 ‘ ~2 (B25)

4
’13

.G ~ -3D1+D2)E1 + (D3-m4)E2 - 2(D3~4)E3 - 2(D1+D2)E4

512 h1h2
+ (D3+D4)E5 - (D1+D2)E6]- ~~ (B26)

1

B14 . ; [(D3-3D4)E1 + (3D1-D2)E2 - 2(D~~2)E3 + 2(D3+D4)E4 - (D1+D2)E5
1

(B27)

B15 = &[(2D1+~-D8)Ql + (D5-D6-~4)Q2 - (D@6)q3 + (D7+D8)Q4

- (D9 sinh 2r)Q5 - (DIO sinh 2r)Q6 - (D9 sin 2r)Q7 - (Dlo Sill~)~]

+ 4
[

— -20h3 + 12h4 + 18 siuh 2r -
15M3

6 sin 2~ (B28)
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B16 =

+

B17 =

B18 =

B19 =

B~~ =

B21 =

+

’22 =

+

-1-

% [(‘D5~6+~4)Q1 + (2Dl~D7-D8)Q2+ (D7~8)Q3 + (D5~6)Q4
2

(Dlo sifi 2r)Q5 + (D9 sinh 2r)~ - (DIO sin 2r)Q7

(D9 sin 2r)~]+ &&[12h3 - ZOh4 -6 sinh 2r + 18 sin Zr]

(B29)
16h3

~
(B30)

16h4
1- (B31)

8 sinh 2r

%
(B32)

8 sin 2r

%
(B33) .

4
q [(-2D~-D7+D8)Q~+ (D~-D6-2D4)Ql~_(D5+D6)~ + (D7W8)Q3

.

(D9 sinh2r)Q7 +(D~0sirih2r)~- (D9 sin2r)~

.

●

$~D5-D6-m4)~ + (2D1-f-D7-D8)~-
2

(D10sWh2r)~ - (D9 sinh2r)~ -

(D9 sin 2r)~]-&-[12h4 +20h3 +

A

(B34)

(D7+D8)Q4 + (D5~6)~

(Dlo sin 2r)Q5

1
6sin2r-f-18sitih2r

(B35)

.

.
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where

~ sinh 2r sin 2r -~shhrsinr

2+$ cosh r cos r

C3= ~-~cosa - ~cosh2r+~ cosh r cos r

4
~ cosh 2r + ~

c4=-Ec0s &+5 5
sinh r sin r

C5 =~sinh2rsin2r+& sinh r sin r

c~ =~cosh2rcos2r +2- ~~ cosh r cos r

D1 . cosh%r cos2r sfnh r sin r

D2 . siuh3r sin%

D3 = cosh3r cos3r

D4 = sinh% sin% cosh r cos r

D5 = cosh r cos%r sinl?r

D6 = cosh3r cos r sin%

117= sinh% sin r COS%

D8 = cosh2r sin3r sinh r

‘9
= siuh r cos r

%0 = cosh r sin r

37

(B36)

● (B37)
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El = ~ cosh 2r cos 2r + 2 - ~ cosh r cos r

E2 =$sinh2rsin2r-~ sinh r sin r

E3 = +cosa+: cosh 2r -~sinhrsinr
5

E4 = -$cos2r - $cosh2r+~ cosh r cos r

E5 . -~sinh2rsin2r+~ sinh r sin r

E6 = -~cosh2rcos2r +2- ~ cosh r cos r

hl = cosh r cos r

~=sinhrsinr

h3 . cosh r sinh r(l - 2 cos?r)

1
.

.

(B38)

(B39)

.

.

h4=- sin r cos r(2 cosh2r - 1) J
L1 = (cosh2r + cos2r - 1)3 1 (B40)
~ = (cosh2r - cos2r)2 (cosh2r + cos2r - 1)

Ml = (cosh2r + cos2r - 1)2

M2 = (cosh2r - cos2r)2

MS = (cosh2r + cos2r - 1) (cosh% - cos2r)

\

(B41)

M4 = cosh2r sin2r

~ = sin2r cos2r
.

.
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fall= $ cosh 2r Sin 2r - ~ cosh r sin r

Q2 = ~ sinh 2r cos 2r
4

-—sinhrcosr
3

Q3 =~sinh2rcos2r-
4
— cosh r sin r
5

%= -~cosh2rsin2r+$ sinh r cos r

Q5’ -~sin2r+~
2

sinh r cos r - - cosh r sin r
5

+sin2r+~%=-5 cosh r sin r + ~ sinh r cos r

5

Q7 = -&inh2r+g 2cosh r sin r - — sinh r cos r
5

~’+Siti2r ~
2

-—sinhrcosr--cosh rsinr
5

‘The constants
explicitly as

(B2-B1)sifi r

Nusselt

appearing in

IhmiberConstants

equations (83) to (84) are given

(B42)

cos r - (Bl+B2)cosh r sin r + 8(B4-B3)siti 2r cos 2r

9(B3+B4)cosh 2r sin 2r - 4B5(sinh 2r - sin 2r) (B43)

(B7-B6)sid r cos r - (B6+B7)coshr sin r + 8(B3+B4)siti 2r cos 2r

8(B4-~3)cosh 2r sin 2r (B44)

(B9-B8)sinh r cos r - (B8%~)cosh r sin r + 8(BU-BIO)sinh 2r cos 2r

8(B10+B11)cosh 2r sin 2r + ~~(sinh 2r + sin 2r) (B45)
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$24 = (B14-B13)simr cos r - (B13@14)cosh r stn r

+ 8(B3-B4)sinh 2r cos 2r + 8(B3+B4)cosh 2r sin 2r

4335(sinh2r - sin 2r) (B46)

~5 = (B~6-B~~)COShr cos r - (B&B16)sinhr sinr

+ 8(B18-B17)cosh ~ COS.fi - 8(B17+B~8)Sinh 2r sin 2r .—

- 4B19 cm 2r + 4B20 cosh 2r (B47)

n 6= (B22-B21)coshr cos r - (B21+B22)sinhr sin r

+ 8(B17%18)cosh 2r cos 2r - 8(B17-B18)S~?lh& Sin Zr

- ~zo COS ti - +&319 cosh ti (B48)

13EFEmNcEs

1. Ostrach, Simon: Laminar I?atural.-ConvectionFlow and Heat Transfer
of Fluids with and without Heat Sources in Channels with Constant
Wall Temperatures. NACATN 2863, 1952.

.

—

.
.

2. Lighthill, M. J.:’ Theoretical Considerations on Free Convection in
Tubes. F.M. 1758, Aero. Res. Council, July 21, 1952.

3. MartineX1.i,R. C., and Boelter, L. M. K.: The Analytical Prediction
of Superposed ~ee and Forced Viscous Convection in a Vertical Pipe.
Univ. Calif. Press (Berkeley and Us @eles), 1942.

4. Goldstein, S.: Modern Deve@pments in Fluid Dynamics. Vol. II.
Clarendon Press (Oxford), 1938, pp. 622-623.

5. Nusselt~ Wilhelm: Die Abh&gigkeit der W_&me&bergangszshl,vonder
Rohrl&nge. Z.V.D.I., Bd. 54, 1910, pp. 1154-~58. ..— ..___

6. Eagle, A. E., and.Ferguson, R. M.: On th~ Coefficient of Heat
Tratififerfrom the Internal Surface of Tube Walls.” Proc. Roy. Sot--- “--
(London), ser. A, vol. 127, 1930, pp. 540-566.

7. Hamilton, D. C., Poppendiek, H. F., and Palmer, L. D.: Theoretical
and Experimental Analyses of Natural Convection within Fluids in r-

which Heat is being Generated - Part I: Heat Transfer from a
Fluld tn Laminsr Flow to Two Parallel Plane Bounding Walls: A
Simplified Velocity Distribution was Postulated. Cl?51-12-70, Oak

>.._

Ridge Nat. Lab., Dec. 18, 1951.



.

.

NACA TN 3141 41

8. Bosworth, R. C. L.: Eeat Transfer Phenomena. John Wiley & Sons,
lnC.j 1952.

9. Eckert, E. R. G., and Jackson, Thomas W. : Analysis of Turbulent Free-

10.

u ●

12.

13.

14.

15.

16.

Convection Boundary Layer o~ Flat Plate. NACA Rep. 1015, 1951.
(SupersedesNACA TN 2207.)

Ostrach, Simon: An Analysis of Laminsr lRree-ConvectionFlow andEeat
Transfer about a Flat Plate Parallel to the Direction of the Gener-
ating Body Force. NACA Rep. 1111, 1953. (SupersedesNACATN 2635.)

Ostroumov, G. A.: Mathematical Theory of the Steady Heat Transfer
in a Circular Vertical Hole with Superposition of Forced and Free
Lsminar Convection. Jour. Tech. Phys., vol. XX, no. 6, 1950.

Ostrach, Shmn: New Aspects of Natural-Convection Heat Transfer.
Trans. A.S.M.E., vol. 75, no. 7, Oct. 1953, pp. 1287-1290.

Havemann, H. A.: Critical Cooling. Mech. E@., Bangdore (India),
no. 1, Oct. 1950, pp. 16-25.

Prandtl, Ludwig: Aer durch die Str*lehre. Friedr. Vieweg
und Sohn (Braumschweig),1949.

de Graaf, J. G. A., and van der Held, E. F. M.: The Relation Between
the Heat Transfer and the Convection Phenomena unenclosed Plane
Air Layers. Appl. Sci. Res., sec. A, vol. 3, no. 6, 1953, pp. 393-
409.

Watzinger, A., und Johnson, Dag G.: Wllrm~bertragung von Wasser an
Rohrwand bei senlmechter Str-- in ~ergangsgebiet zwischen
laminarer und turbulenter Stromung. Forsch. Geb. Ing. - We~., Bd.
10, Heft 4, Juli/Aug. 1939, pp. 182-196.



TABIJ3I. - Zmc?m olmERuNmmMG mNcrIom

(a) Ra =10

l-l

0
.1
.2

.3

.4

.5

.6

.7

.8

.9
1.0

o
.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0
—

.

‘(X3 I ’01

1
.8821 0

.8835 -.01293

.8876 -.02504

.8846 -.03570

,9041 -.04387

.91.59 -.04902

.9288 -.05028

.9457 -.04676

.962a -.03771

.9811 -.02237

.0 0

’02

-0.3571

-.3536

-.3431

-.3256

-.30-H.

-.2684

-.Z304

-.1842

-.1304

-.08801

0

1
Voo Vol

0.1342 0
-.1258 -.06668

-.09985 -.1322

-.05462 -.195i

-.01291 -.2522

.1061 -.2986

.2279 -.3266

.3806 -.3258

.5638 -.2828

.7745 -,1807

1.000 0

7
‘;1

o
.07812

.I-.563
,2347

.3132

.3921

.4713

.5507.

.63Q4

.7104

,7906

(b) Ra = 102

*
.1 .36748 -.03828

.2 .38973 -,07435

.3 .42644 -.10594

.4 .477(XI -.13079

.?3 .54067 -.14651
.

.61597 -.L5069
:; .70173 -.14079
.8 .78597 -.11419

.9 .89632 -.06818

’02 I %1

T
-o.59713 0

-.59260 .2220

-.57090 .4463

-.?55537 .6753

-.52119 .9108

-:4751 1.154?5

-.4154 1.4073

-.3402 1.6694

-.2476 1.8402

-.1350 2.2180

l.op.000 10 10 12.50CQ

(d) Ra = 104

V02
11

Vol ~ Voo Vol

-0.1672 0 0 -0.053806 0

-.1735 .09850 .1 -.056456 - .OI.2Z29

-.1929 .2639 .2 -.062696 -.031015

-.2217 .5616 .3 -.0672% -.062081

-.2558 1,053 .4 -.060949 -.10908

-.2886 1.798 .5 -.030510 -.17164

-.3105 2:840 .6 .040867 -.24236

-.3092 4.209 .7 .17153 -.30309

-.2696 5.89’7 .8 .37653 -.32059

-.1736 7.862 .9 .65964 -.24313

0 10.00 1.0 1.0000 0

V02

0.02232~

.015544

-.0054315

-.042058

-.095256

-.16322

-.23786

-.30121

-.32004

-.24306

0 3
Vol

o
-.6621

-1.2444

-1.6264

-1.6120
-.8074

.8741

4.1660

9.3285

16,449
2

, , .



,

TA2MII. --m mm9Kw4L 210torIalB

(a) Fa .10

(b) M -102

4 .

% % W4 ‘T5

tI.76Wa 10-2 .6, O1O2XK!-2 o 0
-.7S52 -6.0122 .01315X1 O-? .Ozl.wao-:
-.6923 -8,0380 .0m77
-.6651

.02774
-.2,037s .o1252 .ma92

- .572Q -6.9s21 ,CmS30 -.041s3
-.5Jm2 .B,81.62 -,02f96 -.lml
-; M?67 -S, aaa
-.?,496

-.owla
-4.2210

-.9MB
- .025Q

-,2S72 -3. 7e12
-.S077

-,1001
-.1617

-.3464
-n.2m70 - ,010s

0 0
-.2720

V12 % ’14 ’16 ro V:l VT2 ‘is J! 4 %5

l.4wxlo- 4.291”10-5 0 0
1.411!3

-0, 7?92*1O-3 -B ,11mm3-3 -s.647.10-~ .0, 908s10-S o
3.’466 Xl&w+ .02188 x10-S -9,0S6

0

1,3660
-a .mls -3,674 -7.125

3.&8 .0441 -10.308
.2174 ”U3-S .0626 x10-3

1,9780 5.670
-8.8442

,Q22d .0662
-3.346 -7,476 ,S406 .0101

-11.mB
1.1091 s .41’2 .0411

-8.2181 -3.05B
.02’71 -11, 8m

-2.011 .S156
-B.646 -2. 9s5

-.1155

1.014E 3.062 .Oma ,1041 -11.086
-6.651 .oa7e

-10.341 -a.3sB
-.3736

.6460 S.-7 .0&68
-9.237 -.52B1 -.76!51

.6573
,1136 -11,824 .::.:% -2.028 -2,555

Z,ms .0721 .1104 -10. B29
-.9887 -L 2442

-1,76m
.Lmd 1.426 .022s .0606

-9, S23
-6.685

-L2J14 -l.897s
%:261

.2Sa’9 ,757 .0372 .03a
-1,4111 -2,021 -L 9664 4.m64

-6.155 -6.11s -,9939 -6.Q49 -1,2@m -1.8235

(e)Ra - lm

n 720 Vll w V13 n 4 h3 v~
‘il

0 S2 .74SX10-8 -2.O1mtiO-6 40, 7Q0.1 O-8 11 .253 X1O-8 0
.1 84.448

w,mxlo-8 77.722 ”10-0
-1.6255 40.261 11.6C$

.2 Bg.lm
- ,2496 SM10-8 !&Oa10-6 KIS,62 70,911

-.44976 59.046 11.676
,5 m .594

-,02461 8.2we 223,05 76.270
37.047

.4 101.85
12.6S-5 1 .0S-95

HfR
11.s66 -1 S,679 69. S22

54.384 13,W 3.0732 1s.926
,5 109.27 7.1&24

-271.74 41.068
S1.06S

,8 102.96
1S..,546

S.8?.22
5.8732

27.16s
15.310 -678,37

1s.036
-m ,74

6.7.9!31
,7 02.071 11.2M 22. M4 11.625

15.487
10.731

-U.3.36
14,265

,6 70.722 10.6e7 16.652 B ,6*
Iw’

10,340 U.427
-236.32

,6 %.9S4
-Mfl .: -354.0s

6.651 2,196
1.0 0

6.8s5
0

8..273 e.em
0 0

-310.07
0 0 0“ o

n ho W he h V14 V15 ~TO Vh ~h Vf 3 Vh V15

0 -17 .64B*10-n :&;flxlo-O 23 .3e4x10-6 gyJtio-2 o
27 ,S67

SS. SB7=1 O-6 -1 .4532 a10-8 # .! Y267x10-8 10.167 ,10-8 0
-8.7561 xlo-9 21941 nlo-0

:: 3zu:7 -16 :03S
34.053

0

42:215
-.94600 8.5248

40,566 -U?.4CQ 46.714
B.2564

.3 13!5,16

1.0689 x10-6

-16,’712 m.slo 60, 71s
54.404 ,71198 0,3263 e .62s7

-15.22a

.W5m= lo-a

71,109 m .521
2.6739 .7624

.4 25a .73 -15,3s9 81.016
3.7600 R,6096 2.1226

‘41.6W
5.269.2

-12.SZ5 94.2W 20,065
-1.1s2-6

.5 526,66 -4,5476 lW.36 110,61
7.9142

-I, 56m u2, m
-2.1724

-6.667s
-S .256 6.7~ -4,816

,6 911.01 11.250
11,2S6 -7.189 -0, s73

112.61 121.6a 20, 4S1 122.73 -62. B60
11, ?W -6.5S

.7 524. u
9.om -11,02U

41.011 113.76 1=.7s 60,144 12ZI.16
-11,929 -11 ,eCa

-114.13
,6 642. KI m.oln 100.00 104.70

-6.400 -14,368 -14, ?36 -::0?
104.74

-14. ~
-l@s,23

.9 641.9Q 50.62 ~.36 6;, 6S E’:%
-36, w15 -21,.2’37

6;, 51
-21.62

.15p2
-3b. &16 -21.386

1,0 0 0
-89.14B .3:.30

0 0
-3; .36 -~,410 .3; ,Z8



44 N.ACATN 3141

.

.

Section of
fully developed
flaw

x

2!

Figure 1. - Schematic sketch of configuration considered.

.

.

.

.



NACA m 3141 45

18

14

.

.

4 “ “
//f

2

j, / ‘ \
10 U1

n

o

f

.
-2
0 .2 .4 .6 u 1.0,

Y . y/a

(a)m= -1.

Figure2. - Dimensionlessvelocitydistributionsfcr vsrious
heat-sourceparameterswfth Ra . 10,KA . 10, C . -1.



46 NACA TN 3141

D

.

JJiLL-Ilou.u
--10U*
J,)

I
/ “ Heat-source

parameter,

24~ a
o

— .— 10
——— lCXY

0 .2 .4 .6 .8 1.0
Y= Y/d

,
(b) m = 1.

Figure 2. - Continued. Dimensionlessvelocitydistributions
for variousheat-sourceparameterswith Ra = 10, KA = 10,
c = -1.

.

.



NACA TN 3141 47

,

*

U&2
# “PI

!3
II

32- . Hes.t-soyrce

10 u~ ~,
parameter,

a
o

— .—
/ 10

/
/

28
—.— No

/ 10 Uo ‘. \

\
i I

/24.
/

\ \

/
It

/ u~

20. H - - \ \ ‘~ i\

{/
/

I I
I

T/

16. 1
If
1,
It/ /

/- +
/ 0‘

12 I / L
\l ! \!

/ I

k
/

8 \ , i

\ ~\

\
4 \

\)

o .2 .4 .6 .8 1.0
y = Y/d

(c)m= 2.

●

Figure 2. - Concluded. Dimensionless velocity distributions
for various heat-source parsmet=s with Ra . 10, KA ~ 10>
c = -1.



48 NACA TN 3141

.

.

.
.

.

Figure3. - Dimensionlessvelccitydis ibutionsfor various
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